Offline Handwritten Signature Recognition
نویسنده
چکیده
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images. Keywords—Pattern Recognition, Computer Vision, Adaptive Classification, Handwritten Signature Recognition.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملA Performance Analysis of Different Classification Techniques in Offline Handwritten Signature Verification
Offline handwritten signature system works on the scanned image of a signature. Offline handwritten signature verification is a two class pattern recognition problem. For our experimentation purpose, we have developed offline signature datasets of with genuine and forged signature samples. Some commonly used geometric features were extracted from the signature datasets. Sequential Minimization ...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملNeural Network Based Approach for Recognition for Devanagiri Characters
The development of a Character recognition system for Devnagri is difficult because (i) there are about 350 basic, modified (“matra”) and compound character shapes in the script and (ii) the characters in a words are topologically connected. Here focus is on the recognition of offline handwritten Hindi characters that can be used in common applications like bank cheques, commercial forms, gover...
متن کاملNeural Network Based Offline Signature Recognition and Verification System
Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...
متن کامل